Document Type : Original Article


1 Department of Horticultural Sciences, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

2 Institute of Technology and Life Sciences - National Research Institute, Falenty, Al. Hrabska 3, 05-090 Raszyn, Poland, 4- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Science, Warsaw, Poland

3 Department of Soil Science and Engineering, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran

4 Department of Genetics and Plant Production, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran


Artificial light source is one of the most important factors for high quality and quantity vegetable production in a plant factory. Aiming to investigate the role of light spectra on growth, chlorophyll fluorescence, photosynthesis and stomata parameters in lettuce plants grown in a plant factory, a factorial experiment was conducted based on a completely randomized design with two lettuce cultivars (Lollo Rossa and Lollo Bionda) and four spectra LED illumination red (656 nm), red/blue (3:1) (656 nm), blue (450 nm) and white (449 nm). The results showed that the combination of red and blue LED light had the greatest effect on stomatal conductance (gs), number of stomata, length and width of stomata in both lettuce cultivars. Also the maximum substomatal CO2 concentration (Ci) was observed in both lettuce cultivars when they were treated with red LED light. The results also showed that the maximum CO2 assimilation rate (PN) was observed in Rossa variety under white LED and in Bionda cultivar under blue LED light. Contrary to the results related to some of photosynthetic parameters, the highest values of vegetative traits (plant height, dry and fresh mass of shoots and roots, leaf number and leaf area) of plants were observed in the treatment of red and blue light combination. It is concluded that plant growth, chlorophyll fluorescence characteristics, photosynthetic and stomatal properties can be affected by different spectra and cultivars of lettuce, so that the choice of proper lighting is a fundamental requirement for the cultivation of this plant


  1. Hydroponic methods cause a significant reduction in the consumption of water and plant nutrients in greenhouse conditions and in a plant factory.
  2. Replacement of nutrient solution based on plant needs will reduce the waste of nutrient solution and reduce damage to the environment.


  1. Afridi, M., Fayyaz, M., Rehman, M., Akhter, N., Masood, S., Khan, S. and Ahmad, K. 2020. Effect of Light Emitting Diode (LED) on the Growth and Photosynthetic Characteristics of Brassica Juncea. Journal of Bio-Molecular Sciences (JBMS), 7: 1-9.
  2. Ahmad, M., and Cashmore, A.R. 1997. The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A of ohytochrome B in Arabidopsis thaliana. Plant Journal, 11: 421–427.
  3. Ahmad, M., Grancher, N., Heil, M., Black, R.C., Giovani, B., Galland, P., and Lardemer, D. 2002. Action spectrum for cryptochrome-dependent hypocotyl growth inhibition in Arabidopsis. Plant Physiology, 129: 774–785.
  4. Ahmed, H. A., Tong, Y., Li, L., Sahari, S. Q., Almogahed, A. M. and Cheng, R. 2022. Integrative Effects of CO2 Concentration, Illumination Intensity and Air Speed on the Growth, Gas Exchange and Light Use Efficiency of Lettuce Plants Grown under Artificial Lighting. Horticulturae, 8(3): 270.
  5. Azad, M. O. K., Kjaer, K. H., Adnan, M., Naznin, M. T., Lim, J. D., Sung, I. J., and Lim, Y. S. 2020. The evaluation of growth performance, photosynthetic capacity, and primary and secondary metabolite content of leaf lettuce grown under limited irradiation of blue and red LED light in an urban plant factory. Agriculture, 10(2): 28.
  6. Bantis, F., Smirnakoub, S., Ouzounisc, T., Koukounarasa, A., Ntagkase, N., and Radogloub, K. 2018. Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Scientia Horticulturae, 235, 437–451.
  7. Barbosa, G. L., F. D. Gadelha, N. Kublik, A. Proctor, L. Reichelm, E. Weissinger, G. M. Wohlleb. and R. U. Halden. 2015. Comparison of Land, Water, and Energy Requirements of Lettuce Grown Using Hydroponic Vs. Conventional Agricultural Methods International Journal of Environmental Research and Public Health, 12: 6879-91.
  8. Borowski, E., Michałek, S., Rubinowska, K., Hawrylak-Nowak, B., and Grudzinski, W. 2015. The effects of light quality on photosynthetic parameters and yield of lettuce plants. Acta Scientiarum Polonorum, 14(5): 177-188.
  9. Brazaitytė, A., Miliauskienė, J., Vaštakaitė-Kairienė, V., Sutulienė, R., Laužikė, K., Duchovskis, P., and Małek, S. 2021. Effect of different ratios of blue and red LED light on Brassicaceae microgreens under a controlled environment. Plants, 10(4) 801.
  10. Brechner, M., and Both, A. J. 2014. Cornell Controlled Environment Agriculture. Cornell University.
  11. Brestic, M, and Zivcak, M. 2013. PS II Fluorescence Techniques for Measurement of Drought and High Temperature Stress Signal in Crop Plants: Protocols and Applications. In Molecular Stress Physiology of Plants, 87-131.
  12. Briggs,W.R. and Christie, J.M. 2002. Phototropins 1 and 2: Versatile plant blue-light receptors. Trends Plant Science, 7, 204–210.
  13. Cernusak, L.A. 2020. Gas exchange and water‐use efficiency in plant canopies. Plant Biology, 22: 52-67.
  14. Chen, X. L., Li, Y. L., Wang, L. C., and  Guo, W. Z. 2021. Red and blue wavelengths affect the morphology, energy use efficiency and nutritional content of lettuce (Lactuca sativa L.). Scientific reports, 11(1): 1-12.
  15. de Almeida Lobo, F., Previl, R., Gonzalez-Meler, M.A., Pereira, B.L.C., de Moura, L.C., Ortíz, C.E.R., da Cruz Genuncio, G. and Vourlitis, G.L. 2023. Is intrinsic water use efficiency independent of leaf-to-air vapor pressure deficit?. Theoretical and Experimental Plant Physiology, 35(2): 65-80.
  16. Doheny-Adams, T., Hunt, L., Franks, P.J., Beerling, D.J. and Gray, J.E. 2012. Genetic Manipulation of Stomatal Density Influences Stomatal Size, Plant Growth and Tolerance to Restricted Water Supply across a Growth Carbon Dioxide Gradient. Philosophical Transactions of the Royal Society Biology Science, 367: 547-55.
  17. Domingues, D.S., Takahashi, H.W., Camara, C.A. and Nixdorf, S.L. 2012. Automated system developed to control pH and concentration of nutrient solution evaluated in hydroponic lettuce production. Computers and Electronics in Agriculture, 84: 53-61.
  18. Dyśko, J. and Kaniszewski, S. 2021. Effects of LED and HPS lighting on the growth, seedling morphology and yield of greenhouse tomatoes and cucumbers. HortScience, 48: 22–29.
  19. Eskins, K., Jiang, C. Z., and Shibles, R. 1991. Light‐quality and irradiance effects on pigments, light‐harvesting proteins and Rubisco activity in a chlorophyll‐and light‐harvesting‐deficient soybean mutant. Physiologia Plantarum, 83(1): 47-53.
  20. Esmaeilizadeh, M., M. R. Malekzadeh Shamsabad, H. R. Roosta, P. Dąbrowski, M. Rapacz, A. Zieliński, J. Wróbel, and H. M. Kalaji. 2021. Manipulation of Light Spectrum Can Improve the Performance of Photosynthetic Apparatus of Strawberry Plants Growing under Salt and Alkalinity Stress. PLoS One, 16: 0261585.
  21. Estefan, G., Sommer, R. and Ryan, J. 2013. Methods of soil, plant, and water analysis. A manual for the West Asia and North Africa region, 3: 65-119.
  22. Fan, X., Zang, J., Xu, Z., Guo, S., Jiao, X., Liu, X. and Gao, Y. 2013. Effects of different light quality on growth, chlorophyll concentration and chlorophyll biosynthesis precursors of non-heading Chinese cabbage (Brassica campestris L.). Acta physiologiae plantarum, 35(9): 2721-2726.
  23. Frąszczak, B, and Kula-Maximenko, M. 2021. The preferences of different cultivars of lettuce seedlings (Lactuca sativa L.) for the spectral composition of light. Agronomy, 11(6): 1211.
  24. Gangadhar, B.H., Mishra, R.K., Pandian, G. and Park, S.W. 2012. Comparative study of color, pungency, and biochemical composition in chili pepper (Capsicum annuum L.) under different light-emitting diode treatments. HortScience, 47: 1729–1735.
  25. Gent, M.P. 2017. Factors affecting relative growth rate of lettuce and spinach in hydroponics in a greenhouse. HortScience, 52(12): 1742-1747.
  26. Gent, M.P.N. and Short, M.R. 2010. Managing a simple system to recycle nutrient solution to greenhouse tomato grown in rockwool. In XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on, 927: 913-919.
  27. Han, T., Vaganov, V., Cao, S., Li, Q., Ling, L., Cheng, X. and Tu, M. 2017. Improving color rendering” of LED lighting for the growth of lettuce. Scientific Reports, 7: 1, 1-7.
  28. He, J., Qin, L. and Chow, W. S. 2019. Impacts of LED spectral quality on leafy vegetables: Productivity closely linked to photosynthetic performance or associated with leaf traits?. International Journal of Agricultural and Biological Engineering, 12(6): 16-25.
  29. Hernández, R. and Kubota, C. 2016. Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environmental and Experimental Botany, 121: 66–74.
  30. Hernàndez, R., and Kubota, C. 2012. Tomato seedling growth and morphological responses to supplemental LED lighting red: Blue ratios under varied daily solar light integrals. Acta Horticulturae, 956: 187–194.
  31. Hogewoning, S. W., G. Trouwborst, H. Maljaars, H. Poorter, W. van Ieperen, and J. Harbinson. 2010. Blue Light Dose-Responses of Leaf Photosynthesis, Morphology, and Chemical Composition of Cucumis Sativus Grown under Different Combinations of Red and Blue Light. Journal of Experimental Botany, 61: 3107-17.
  32. Hussain, A., Iqbal, K., Aziem, S., Mahato, P., and Negi, A. K. A 2014. review on the science of growing crops without soil (soilless culture)-a novel alternative for growing crops. International Journal of Agriculture and Crop Sciences, 7: 11, 833.
  33. Kang, W. H., Park, J. S., Park, K. S. and Son, J. E. 2016. Leaf photosynthetic rate, growth, and morphology of lettuce under different fractions of red, blue, and green light from light-emitting diodes (LEDs). Horticulture, Environment, and Biotechnology, 57(6): 573-579.
  34. Kim, H.H., Goins, G.D., Wheeler, R.M. and Sager, J.C. 2004. Stomatal Conductance of Lettuce Grown under or Exposed to Different Light Qualities. Annals Botany, 94: 691-7.
  35. Kim, M. J., Moon, Y., Tou, J. C., Mou, B. and Waterland, N. L. 2016. Nutritional value, bioactive compounds and health benefits of lettuce (Lactuca sativa L.). Journal of Food Composition and Analysis, 49: 19-34.
  36. Łabędzki, Leszek, and Bogdan Bąk. 2017. Impact of Meteorological Drought on Crop Water Deficit and Crop Yield Reduction in Polish Agriculture. Journal of Water and Land Development, 34: 181.
  37. Lamb, J.J., Røkke, G. and Hohmann-Marriott, M.F. 2018. Chlorophyll fluorescence emission spectroscopy of oxygenic organisms at 77 K. Photosynthetica, 56(1):105-124.
  38. Lawson, T. and Blatt, M.R. 2014. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant physiology, 164(4): 1556-1570.
  39. Lawson, T. and S. Vialet-Chabrand. 2019. Speedy Stomata, Photosynthesis and Plant Water Use Efficiency. New Phytologist, 22: 93-98.
  40. Leong, T. Y., and Anderson, J. M. 1984. Effect of light quality on the composition and function of thylakoid membranes in Atriplex triangularis. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 766(3): 533-541.
  41. Li, H., Tang, C., Xu, Z., Liu, X. and Han, X. 2012. Effects of different light sources on thegrowth of non-heading Chinese cabbage (Brassica campestris L.). The Journal of Agricultural Science, 4: 262–270.
  42. Lightenthaler, H. K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148: 350-382.
  43. Matthews, J.S.A., Vialet-Chabrand, S. and Lawson, T. 2020. Role of Blue and Red Light in Stomatal Dynamic Behaviour. Journal of Experimental Botany, 71: 2253-69.
  44. Mattson, N.S. and Peters, C.A.R.I. 2014. A recipe for hydroponic success. Inside Grower, 16-19.
  45. Matysiak, B., Kaniszewski, S., Dyśko, J., Kowalczyk, W., Kowalski, A., and Grzegorzewska, M. 2021. The impact of LED light spectrum on the growth, morphological traits, and nutritional status of ‘Elizium’romaine lettuce grown in an indoor controlled environment. Agriculture, 11(11): 1133.
  46. Meng, X., Wang, Z., He, S., Shi, L., Song, Y., Lou, X., and He, D. 2019. LED-supplied red and blue light alters the growth, antioxidant status, and photochemical potential of in vitro-grown Gerbera jamesonii plantlets. Horticultural Science and Technology, 37: 473-89.
  47. Miao, Y. X., Wang, X. Z., Gao, L. H., Chen, Q. Y. and Mei, Q. U. 2016. Blue light is more essential than red light for maintaining the activities of photosystem II and I and photosynthetic electron transport capacity in cucumber leaves. Journal of Integrative Agriculture, 15(1): 87-100.
  48. Miras-Moreno, B., Corrado, G., Zhang, L., Senizza, B., Righetti, L., Bruni, R. and Lucini, L. 2020. The metabolic reprogramming induced by sub-optimal nutritional and light inputs in soilless cultivated green and red butterhead lettuce. International journal of molecular sciences, 21(17): 6381.
  49. Moazzeni, M., Reezi, S. and Ghehsareh, M. G. 2020. Growth and chlorophyll fluorescence characteri‐stics of Sinningia speciosa under red, blue and white light‐emitting diodes and sunlight. Advances in Horticultural Science, 34(4): 419-430.
  50. Mou, B. 2012. Nutritional Quality of Lettuce. Current nutrition and Food science, 8: 177-87.
  51. Muneer, S., E. J. Kim, J. S. Park, and J. H. Lee. 2014. Influence of Green, Red and Blue Light Emitting Diodes on Multiprotein Complex Proteins and Photosynthetic Activity under Different Light Intensities in Lettuce Leaves (Lactuca Sativa L.). International Journal of Molecular Sciences, 15: 4657-70.
  52. Naznin, M. T., Lefsrud, M., Gravel, V., and Azad, M.O.K. 2019. Blue light added with red LEDs enhance growth characteristics, pigments content, and antioxidant capacity in lettuce, spinach, kale, basil, and sweet pepper in a controlled environment. Plants, 8(4): 93.
  53. Nguyen, T.P.D., Jang, D.C., Tran, T.T.H., Nguyen, Q.T., Kim, I.S., Hoang, T.L.H. and Vu, N.T. 2021. Influence of Green Light Added with Red and Blue LEDs on the Growth, Leaf Microstructure and Quality of Spinach (Spinacia oleracea L.). Agronomy, 11(9): 1724.
  54. Oh, H. E., Yoon, A., and Park, Y. G. 2021. Red Light enhances the antioxidant properties and growth of Rubus hongnoensis. Plants, 10(12): 2589.
  55. Pantanella, E, M Cardarelli, PP Danieli, A MacNiven, and G Colla. 2010. Integrated Aquaculture-Floating Agriculture: Is It a Valid Strategy to Raise Livelihood?" Paper presented at the XXVIII International Horticultural Congress on Science and Horticulture for People (IHC2010): International Symposium on, 921: 79-86.
  56. Parolin, P, Waldhoff, D. and Maria, T.F. P. 2010. Gas Exchange and Photosynthesis. In Amazonian Floodplain Forests, 203-22.
  57. Pennisi, G., Blasioli, S., Cellini, A., Maia, L., Crepaldi, A., Braschi, I., Spinelli, F., Nicola, S., Fernandez, J.A., Stanghellini, C. and Marcelis, L.F. 2019. Unraveling the role of red: blue LED lights on resource use efficiency and nutritional properties of indoor grown sweet basil. Frontiers in plant science, 10: 305.
  58. Pérez-Urrestarazu, L., Lobillo-Eguíbar, J., Fernández-Cañero, R. and Fernández-Cabanás, V. M. 2019. Suitability and optimization of FAO’s small-scale aquaponics systems for joint production of lettuce (Lactuca sativa) and fish (Carassius auratus). Aquacultural Engineering, 85: 129-137.
  59. Piovene, C., Orsini, F., Bosi, S., Sanoubar, R., Bregola, V., Dinelli, G. and Gianquinto, G. 2015. Optimal red: blue ratio in led lighting for nutraceutical indoor horticulture. Scientia Horticulturae, 193: 202-208.
  60. Porra, R.J., Thompson, W. A. and Kriedemann, P. E. 1989. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 975(3): 384-394.
  61. Prasad, A., Du, L., Zubair, M., Subedi, S., Ullah, A., and Roopesh, M. S. 2020. Applications of Light-Emitting Diodes (LEDs) in food processing and water treatment. Food Engineering Reviews, 12(3): 268-289.
  62. Raschke, K. 1975. Stomatal Action. Annual Review of Plant Physiology, 26: 309-40.
  63. Rehman, M., S. Fahad, M. Hamzah Saleem, M. Hafeez, MHu Rahman, F. Liu, and G. Deng. 2020. Red light optimized physiological traits and enhanced the growth of ramie (Boehmeria nivea L.). Photosynthetica, 58(4): 922-931.
  64. Resh, H. M. 2022. Hydroponic food production: a definitive guidebook for the advanced home gardener and the commercial hydroponic grower. CRC press.
  65. Ritchie, S. W., Nguyen, H. T., and Holaday, A. S. 1990. Leaf water content and gas‐exchange parameters of two wheat genotypes differing in drought resistance. Crop science, 30(1): 105-111.
  66. Roháček, K., Soukupová, J., and Barták, M. 2008. Chlorophyll fluorescence: a wonderful tool to study plant physiology and plant stress. Plant Cell Compartments-Selected Topics. Research Signpost, Kerala, India, 41-104.
  67. Rolnik, A., and B. Olas. 2021. The Plants of the Asteraceae Family as Agents in the Protection of Human Health. International Journal of Molecular Sciences, 6: 3009.
  68. Roni, M. Z. K., Islam, M. S., and Shimasaki, K. 2017. Response of Eustoma leaf phenotype and photosynthetic performance to LED light quality. Horticulturae, 3(4): 50.
  69. Ronzoni, R. 2020. A Guide To Home Hydroponics For Leafy Greens. Master of Professional Studies In Agriculture and Life Science, Field of Horticulture, Cornell University, 101 pages.
  70. Sabzalian, M., Heydarizadeh, P., Zahedi, M., Boroomand, A., Agharokh, M. and Sahba, M. Schoefs B. 2014. High performance of vegetables, flowers, and medicinal plants in a red-blue LED incubator for indoor plant production. Agronomy Sustainable Development, 34(14): 879–886.
  71. Shimazaki, K., Doi, M., Assmann, S.M. and Kinoshita, T. 2007. Light Regulation of Stomatal Movement. Annual Review of Plant Biology, 58: 219-47.
  72. Silva, L., Gasca-Leyva, E., Escalante, E., Fitzsimmons, K. M., and Lozano, D. V. 2015. Evaluation of biomass yield and water treatment in two aquaponic systems using the dynamic root floating technique (DRF). Sustainability, 7(11): 15384-15399.
  73. Son, K. H., and Oh, M. M. 2015. Growth, photosynthetic and antioxidant parameters of two lettuce cultivars as affected by red, green, and blue light-emitting diodes. Horticulture, Environment, and Biotechnology, 56(5): 639-653.
  74. Stangl, Z.R., Tarvainen, L., Wallin, G., Ubierna, N., Räntfors, M. and Marshall, J.D. 2019. Diurnal variation in mesophyll conductance and its influence on modelled water-use efficiency in a mature boreal Pinus sylvestris stand. Photosynthesis Research, 141: 53-63.
  75. Strasser, Reto J, Merope Tsimilli-Michael, and Alaka Srivastava. 2004. Analysis of the Chlorophyll a Fluorescence Transient. In Chlorophyll a Fluorescence, 321: 62.
  76. Trejo-Téllez, L.I. and Gómez-Merino, F.C. 2012. Nutrient solutions for hydroponic systems. Hydroponics-a Standard Methodology for Plant Biological Researches, 1-22.
  77. Tsai, Y.C., Chen, K.C., Cheng, T.S., Lee, C., Lin, S.H. and Tung, C.W. 2019. Chlorophyll fluorescence analysis in diverse rice varieties reveals the positive correlation between the seedlings salt tolerance and photosynthetic efficiency. BMC Plant Biology, 19: 1-17.
  78. Van der Lugt, G., Holwerda, H.T., Hora, K., Bugter, M., Hardeman J. and Vries, P.De. 2020. Nutrient Solutions for Greenhouse Crops. Version 4. Pp 1-98. ISBN 9789464021844 Made available by: Eurofins Agro, Geerten van der Lugt, Nouryon, SQM, Yara.
  79. Van der Tol, C., Verhoef, W. and Rosema, A. 2009. A Model for Chlorophyll Fluorescence and Photosynthesis at Leaf Scale. Agricultural and Forest Meteorology, 149: 96-105.
  80. Vernay, A., Tian, X., Chi, J., Linder, S., Mäkelä, A., Oren, R., Peichl, M., Stangl, Z.R., Tor‐Ngern, P. and Marshall, J.D. 2020. Estimating canopy gross primary production by combining phloem stable isotopes with canopy and mesophyll conductances. Plant, Cell and Environment, 43(9): 2124-2142.
  81. Wang, H., Gu, M., Cui, J., Shi, K., Zhou, Y. and Yu, J. 2009. Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. Journal of Photochemistry and Photobiology B: Biology, 96(1): 30-37.
  82. Wang, J., Lu, W., Tong, Y.X., and Yang, Q.C. 2016. Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Front. Plant Science, 7: 250.
  83. Wang, J., Lu, W., Tong. Y. and Q. Yang. 2016. Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca Sativa L.) Exposed to Different Ratios of Red Light to Blue Light. Frontiers in Plant Science, 7: 250.
  84. Wang, M., H. Wei, and B. R. Jeong. 2021. Lighting Direction Affects Leaf Morphology, Stomatal Characteristics, and Physiology of Head Lettuce (Lactuca Sativa L.). International Journal of Molecular Sciences, 22: 3157.
  85. Wang, X.Y., Xu, X.M. and Cui, J. 2015. The importance of blue light for leaf area expansion, development of photosynthetic apparatus, and chloroplast ultrastructure of Cucumis sativus grown under weak light. Photosynthetica, 53: 213–222.
  86. Ward, J.M., Cufr, C.M., Denzel, M.A. and Neff, M.M. 2005. The dof transcription factor OBP3 modulates Phytochrome and cryptochrome signaling in arabidopsis. Plant Cell, 17: 475–485.
  87. Williams, M., Waters, E., Golbek, M. and Wormington, J. 2015. Effect of different shades of light on photosynthesis. Journal of Introductory Biology Investigations, 2(4): 1-15.
  88. Wojciechowska, R., Kołton, A., Długosz-Grochowska, O., Kunicki, E., Mrowiec, K. and Bathelt, P. 2020. LED lighting affected the growth and metabolism of eggplant and tomato transplants in a greenhouse. Horticultural Science, 47: 3.
  89. Wojciechowska, R., Kolton, A., Dlugosz-Grochowska, O., Zupnik, M. and Grzesiak, W. 2013. The effect of LED lighting on photosynthetic parameters and weight of lamb's lettuce (Valerianella locusta). Folia Horticulturae, 25, 1, 41.
  90. Yang, X., M. I. Gil, Q. Yang, and F. A. 2022. Tomás-Barberán. "Bioactive Compounds in Lettuce: Highlighting the Benefits to Human Health and Impacts of Preharvest and Postharvest Practices. Comprehensive Reviews in Food Science and Food Safety, 21: 4-45.
  91. Yu, H. and Ong, B.L., 2003. Effect of radiation quality on growth and photosynthesis of Acacia mangium seedlings. Photosynthetica, 41: 349-355.
  92. Zarco-Tejada, P. J., Catalina, A., González, M. R. and Martín, P. 2013. Relationships between net photosynthesis and steady-state chlorophyll fluorescence retrieved from airborne hyperspectral imagery. Remote Sensing of Environment, 136: 247-258.
  93. Zhang, S., Ma, J., Zou, H., Zhang, L., Li, S., and Wang, Y. 2020. The combination of blue and red LED light improves growth and phenolic acid contents in Salvia miltiorrhiza Bunge. Industrial Crops and Products, 158: 112959.
  94. Zhang, Z., Zhang, L., Xu, H., Creed, I.F., Blanco, J.A., Wei, X., Sun, G., Asbjornsen, H. and Bishop, K. 2023. Forest water-use efficiency: Effects of climate change and management on the coupling of carbon and water processes. Forest Ecology and Management, 534: 120853.
  95. Zheng, L., & M. C. Van Labeke. 2017. Long-Term Effects of Red and Blue Light Emitting Diodes on Leaf Anatomy and Photosynthetic Efficiency of Three Ornamental Pot Plants. Front in Plant Science, 8: 917.
  96. Zheng, Y., M. Xu, R. Hou, R. Shen, S. Qiu, and Z. Ouyang. 2013. Effects of Experimental Warming on Stomatal Traits in Leaves of Maize (Zea May L.). Ecology and Evolution, 3095-111.
  97. Zhushi Etemi, F., Çadraku, H., Bytyçi, A., Kuçi, T., Desku, A., Ymeri, P., and Bytyçi, P. 2020. Correlation between physical and chemical parameters of water and biotic indices: The case study the White Drin River basin, Kosovo. Journal of Water and Land Development, 7: 229-241.